beikan contoh soal cerita persamaan dan pertidaksamaan linear !
1. beikan contoh soal cerita persamaan dan pertidaksamaan linear !
contoh soal cerita PLSV dan PtLSV beserta caranya
jawab:
soal cerita PLSV :
jika Nia membeli 8 batang pensil seharga Rp.16000,- , maka berapa uang yang di keluarkan Nia jika membeli pensil 2 batang?
penyelesaian:
8x = 16000
x = 16000/8 = 2000
jadi harga pensil Rp.2000 setiap batang
uang yg harus dibayar Nia ,jika 2 batang pensil = 2.x = 2 .Rp2000 =Rp. 4000
soal cerita PtLSV :
jika panjang sisi persegi panjang adalah 2 kali lebarnya ,dan kelilingnya lebih dari 100 cm , tentukan besar sisi lebar minimal persegi panjang tersebut.
penyelesaian:
Panjang misalkan = x
lebar misalkan = y
maka
x =2y
keliling = 2(P+L) > 100
2(x+y)>100
x+y >50
2y+y >100
3y>100
y>100/3
y>33,33 cm
jadi lebarnya harus lebih dari 33,33 cm
2. contoh soal cerita dari persamaan linear dua variabel dan pertidaksamaan linear dua variabel
1. Rina membeli 6 buku dan 3 pensil. Ria membeli 8 buku dan 4 pensil di toko yg sama,jika Rina hrs membayar rp 21.000 dan Ria rp 25.000
jika Nia membeli 5 buku dan 3 pensil ,brpkah Nia hrs membayarnya
3. contoh soal cerita dan pembahasan/jawaban tentang persamaan dan pertidaksamaan linear satu variabel
Sebuah persegi panjang mempunyai panjang 5cm lebih dari lebarnya. Jika lebarnya Xcm dan kelilingnya tidak kurang dari 50cm, maka tentukanlah lebar maksimal persegi panjang itu.
4. contoh soal cerita tentang persamaan linear yg melibatkan nilai mutlak!dan pertidaksamaan linear yg melibatkan nilai mutlak !please jawab sekarang !soal cerita beserta jawaban!
Jawab:
soal persamaan linear yg melibatkan nilai mutlak
Tentukan himpunan penyelesaian dari persamaan |x - 7| = 3
Penyelesaian
x - 7 = 3
x = 7 + 3
x = 10
Soal pertidaksamaan linear yg melibatkan nilai mutlak
Tentukan himpunan penyelesaian dari pertidaksamaan |x-1| > 2
Penyelesaian
|x-1| > 2
(x - 1)2 > 22
x2 -2x + 1 > 4
x2 -2x +1 - 4 >0
x2 -2x -3 > 0
(x – 3)(x + 1)>0
x = 3 atau x = -1
x < -1 atau x > 3, gambarnya ada dibawah
Jadi, himpunan penyelesaiannya adalah x < -1 atau x > 3
5. 1 Menentukan anggota-anggota dari himpunan (Himpunan) Himpunan bilangan asli kurang dari 52 Menentukan anggota himpunan A irisan anggota B komplemen (Himpunan) Tiga himpunan S, A dan B3 Menentukan banyaknya anggota himpunan A (Himpunan) Himpunan bilangan bulat antara 1 dan 104 Menentukan kelipatan anggota himpunan (Himpunan Kelipatan) 5 antara 20 dan 1005 Menentukan banyaknya himpunan bagian yang mungkin dari himpunan tersebut (Himpunan) Himpunan dengan 5 anggota6 Menentukan irisan kedua himpunan (Himpunan) Dua himpunan, himpunan bilangan prima dan himpunan bilangan ganjil7 Menentukan komplemen dari A gabung B (Himpunan) Tiga himpunan S, A dan B8 Menentukan banyaknya anggota dari A gabung B (Himpunan) Banyaknya anggta himpunan A, B dan A iris B9 Menentukan banyaknya himpunan bagian yang beranggotakan 2 elemen (Himpunan) Himpunan bagian10 Menentukan banyaknya siswa yang gemar kedua ekskul tersebut (Himpunan) Contoh kasus siswa peserta ekskul Pramuka dan PMR11 Menentukan operasi dari daerah yang diarsir. (Himpunan) Diagram venn dengan himpunan beririsan12 Menentukan peserta yang mengikuti lomba cerpen saja. (Himpunan) Contoh kasus siswa peserta lomba baca puisi dan lomba menulis cerpen13 Menyederhanakan bentuk aljabar tersebut (Bentuk Aljabar) Bentuk aljabar dengan beberapa suku14 Menentukan koefisien dari salah satu suku yang ada (Bentuk Aljabar) Bentuk aljabar dengan beberapa suku15 Menentukan banyak suku pada bentuk aljabar tersebut (Bentuk Aljabar) Beberapa bentuk aljabar16 Diberikan beberapa bentuk aljabar. Peserta didik dapat menentukan bentuk aljabar yang memiliki dua suku sejenis (Bentuk Aljabar) Beberapa bentuk aljabar17 Menyederhanakan penjumlahan bentuk aljabar tersebut. (Bentuk Aljabar) Bentuk-bentuk aljabar18 Menentukan hasil perkalian bentuk aljabar (Bentuk Aljabar) Perkalian19 Menentukan hasil perkalian bentuk aljabar (Bentuk Aljabar) Dua suku bentuk aljabar yang sama20 Menyederhanakan perkalian aljabar tersebut (Bentuk Aljabar) Dua bentuk aljabar yg berbeda21 Menentukan KPK dari ke tiga bentuk aljabar tersebut (Bentuk Aljabar) Tiga bentuk aljabar yg berbeda22 Menentukan hasil akhir dari bentuk aljabar tersebut (Bentuk Aljabar) Bentuk aljabar dan nilai dari variabel-variabelnya23 Menyederhanakan pembagian dua bentuk aljabar tersebut (Bentuk Aljabar) Dua bentuk aljabar yg berbeda24 Menentukan panjang sisi dari persegi panjang tersebut. (bentuk Aljabar) Persegi panjang diketahui luas dan lebarnya25 Menentukan persamaan linear satu variabel (Persamaan linear satu variabel) bentuk-bentuk persamaan26 Diberikan persamaan linear dg variabel x. Peserta didik dapat menentukan nilai x yang benar (Persamaan linear satu variabel) Persamaan linear27 Menentukan penyelesaian PLSV (Persamaan linear satu variabel) Persamaan linear dg variabel x 28 Menentukan penyelesaian PLSV (Persamaan linear satu variabel( Persamaan linear dg variabel x 29 Menentukan harga sebuah penggaris dan sebuah pensil. (Persamaan linear satu variabel) Aplikasi Persamaan linear30 Menentukan nilai x (Persamaan linear satu variabel) Aplikasi Persamaan linear pada bidang datar (segitiga)31 Menentukan batasan tersebut dengan notasi pertidaksamaan (Pertidaksamaan linear satu variabel) Contoh kasus32 Menentukan penyelesaian PtLSV (Pertidaksamaan linear satu variabel) Pertidaksamaan linear33 Menentukan pertidaksamaan yang ekuivalen dengan pertidaksamaan yg dimaksud (Pertidaksamaan linear satu variabel) Pertidaksamaan linear satu variabel34 Menentukan panjang kaki dari segitiga tersebut (Pertidaksamaan linear satu variabel) Soal cerita tentang segitiga sama kaki35 Menyederhanakan bentuk aljabar terebut (Pertidaksamaan linear satu variabel) Pecahan bentuk aljabarplis, jawab secepat mungkin
Jawaban:
1. {1,2,3,4}
3. {2,3,4,5,6,7,8,9}
Penjelasan dengan langkah-langkah:
cuman bisa itu untuk lainnya itu soalnya belum lengkap,kayak anggota a nya apa gitu jadi nggak bisa di kerjain